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Summary

The Katz track structure model has been applied

to describe recessive lethal mutagenesis in the nema-

tode Caenorhabditis elegans after exposure to heavy

ions. Based on models of the cosmic-ray environ-

ment and heavy-ion transport, mutation rates for

the International Microgravity Laboratory 1 (IML-1)

experiment on the Space Transportation System 42
(STS-42) are predicted and the results are discussed.

Introduction

The nematode Caenorhabditis elegans ( C. ele-
gans) is being studied (refs. 1 to 3) as a model

radiobiological system that can provide information

on mutagcnesis after exposure to galactic cosmic ra-

diation (GCR). C. elegans is particularly well suited

for study because this nematode has a relatively
small, fixed number of cells with only six pairs of

chromosomes; many of its genes have been identified

and mapped. Nelson (refs. 2 and 3) has reviewed

several properties of C. elegans that favor its use in

understanding the biological effects of heavy charged
particles, especially for genetic processes, and its

mutagenesis rates have been measured for several

heavy-ion beams (ref. 3). The International Micro-

gravity Laboratory 1 (IML-1) mission on the Space

Transportation System 42 (STS-42) carried an exper-

imental package containing C. elegans to study the
effects of microgravity and tested ground-based un-

derstanding of GCR effects in space conditions if sig-
nificant exposures occurred. The STS-42 mission du-

ration of about 7 days in an orbit of 57 ° by 163 n.mi.

exposed the C. elegans package to a complicated mix-
ture of particles that vary in composition with the

amount and type of shielding surrounding the pack-

age. Major concerns were anomalous effects on ra-

diation response from microgravity or physiological
stress from spaceflight.

Several considerations could affect our extrap-

olations from ground-based to flight experiments:

fluxes one or two orders of magnitude below those

achieved using accelerators, protracted exposure, and
the broad charge and velocity spectrum of the GCR.

The track structure model of Katz et al. (refs. 4 to 9)
utilizes a charge- and velocity-dependent fit to radio-

biology experiments and is the only model that can
predict cellular endpoint response for the complete

GCR spectrum. Biological response at low fluence is

described by an action cross section representing the

probability that a single ion leads to the endpoint

in question. Laboratory measurements at high dose

for photons and with a few ions allow for a para-
metric determination of the cross section in terms of

ion charge and velocity that can be applied to the

GCR spectrum. Compared with other radiobiologi-

cal models, the zero initial slope for X rays assumed

by the Katz track structure model for multitarget
endpoints leads to the maximum prediction for GCR
effectiveness.

In this report, we consider experimental data for

ion (ref. 3) and photon (refs. 3 to 10) production of

recessive lethal mutations in C. elegans for response

parameters to describe this cndpoint in the Katz

track structure model. This is the first application

of the track structure model to an animal system.
Vv'e then consider the GCR and trapped particle

spectrum that is expected for IML-1 and predict

the expected mutation rates by using models of the

cosmic-ray environment, accurate transport codes,

and shielding models.

Track Structure Model

The track structure model of Katz et al. (ref. 4)
attributes biological damage from energetic ions to

the secondary electrons (delta rays) produced along

the ion path. The deleterious effects of energetic ions

are correlated with those of gamma rays by the as-

sumption that the response in sensitive sites near

the ion path is part of a larger system irradiated

with gamma rays at the same dose. The response
from ion effects is then determined by knowledge of

the gamma-ray response and the delta-ray dose sur-

rounding the ion path. For a multitarget response

with target number m, the inactivation of cells by
gamma rays is assumed to follow a Poisson distribu-

tion reflecting the random accumulation of sublethal

damage with a radiosensitivity parameter D 0.

When ions inactivate the cells, two modes arc
identified: "ion kill," which corresponds to intratrack

effects, and "gamma kill," which corresponds to in-

tertrack effects. Here, the ion-kill mode is unique to
ions corresponding to single-particle inactivation of

cells described by the cross section a. The action
cross section for a sensitive site is determined as

a = 27rt dt I1 - exp (-D/Do)] m (1)

where D is the average dose at the sensitive site from

the ion delta rays. The cell damage is divided by

Katz et al. (ref. 4) into a grain-count regime, where
inactivation occurs randomly along the path of the

particle, and into a track-width regime, where many
inactivations occur and are said to be distributed like

a "hdiry rope." In the grain-count regime, a may be
parameterized as

o=-0



where a 0 is the plateau value of the cross section, fl is

the ion velocity, the effective charge number is given

by

Z'=Z[1 exp (- 125fl/Z2/3) ] (3)

and _ is a parameter related to the radius of the

sensitive site a0 by

DO a__ .._ 2 x 10 -11 Gy/cm (4)

The transition from the grain-count to the track-

width regime (refs. 4 and 5) occurs at a value of
Z*2/(_fl z) on the order of 4. At lower values of
Z .2 we are in the grain-count regime and, at higher

values, the track-width regime.

In the grain-count regime, the fraction of the cells

damaged in the ion-kill mode is P = a/ao, where

a is the single-particle-inactivation cross section and
P is the probability of damage. In the track-width

regime, where cr > a0, it is assumed that P -- 1. In
the track model a fraction of the ion dose (1 - P) is

assumed to add cumulatively to the ions from other

particles to inactivate cells in the gamma-kill mode.

The surviving fraction of a cellular population NO,

whose response parameters are m, DO, and n or a0
after irradiation by a fluenee of particles F, is then
written as

N
= II_II_ (5)

No

where

l-Ii= exp(aF) (6)

is the ion-kill survival probability and

rI-_ = 1 [1 - exp(-D.r/Do)] TM (7)

is the gamma-kill survival probability. The gamma-
kill close fraction is

D r = (1 P)D (8)

where D is the absorbed dose. The fraction of

mutations produced by ions is evaluated as

M - 1 - HiII_ (9)

when mutation response parameters are applied. The
track structure model is applied next to estimate

C. elegans mutation rates after exposure to charged

particles.

Response Parameters

Testing procedures for several types of mutations

in C. elegans have been developed (refs. 3 and 10)
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Figure 1. Percentage of mutations in C. elegans versus
gamma-ray dose. Data from references 3 and 10.

over the last decade. Now, mutation response pa-
rameters for recessive lethal mutations are being con-

sidered through fits to the data of Nelson et al.
(ref. 3) based on results of ion beam experiments in

the Lawrence Berkeley Laboratory Bevelac 0-degree

Beam Spectrometer. The response to gamma rays
has also been measured (refs. 3 and 10) from about

5 to 30 Gy. A linear fit to the gamma-ray data could

be used; however, we obtain a good representation

by using equation (7) with m = 2 and D O = 68 Gy.
Figure 1 shows that the fit is consistent with the ion

data. The plateau value of the action cross section for
recessive lethal mutations is near 0.2 pm 2 from the

data presented in reference 3. We do not consider
track-width effects too cumbersome for use in GCR

transport codes at this time. We used the parame-

terization of equation (2) with a0 = 0.25 #m 2 and

= 700 to compare the track model prediction with

measured mutation rates. Our findings are shown in

figures 2 to 4. The quality of the fit is quite good for
the overall data set, as shown on a linear scale with

all data reproduced to within a factor of 2 or bet-

ter. In figure 4, we included target fragment effects
extracted from reference 9 for the low linear energy

transfer (LET) ions. At high fluenee levels, target
fragments have minimal effect, but will dominate the

effect of low LET ions at lower fluenees (ref. 9). Sev-
eral other ions considered in reference 3 were closer to

the Bragg peak than the plateau region and were not

considered because fragmentation and other effects

complicate the comparisons. Table I is a summary

of the response parameters for C. elegans mutations.

In figure 5, the resulting action cross section versus



TableI. ResponseParametersforRecessive
LethalMutations

Caenorhabditis

eIegans

m Do, Gy

68

aO, cm2

2.5 × 10 -9 700
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Fignlre 2. Percentage of mutations in C. elegans versus ion
fluence for several ions. Data from Nelson et al. (ref. 3).
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Figure 3. Percentage of mutations in C. eIegans versus ion
fluence for several ions. Data from Nelson et al. (ref. 3).

LET is shown for several ions. The cross sections

extend from the stopping region to energies above

100 GeV/nucleon. The radial dose distribution of
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Figure ,1. Percentage of mutations in C. elegans versus ion
fluence for ions with low LET. Data from Nelson et al.

(ref. 3). Solid line includes target fragmentation effects.
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Figure 5. Action cross section versus LET for several ions.

¢xl

E
O

d I0-I0
0

10-11

o

delta rays used in the track structure model does

not reflect relativistic effects that may be important

at the highest energies. In reference 11, Fermi has



suggestedthat relativisticeffectsmay cancelsuch
that a nonrelativisticcalculationis accurate.The
plateauh_thecrosssectionat thehighestLET for
eachioncouldbecorrectedfortrackwidthandthin-
downeffectsbyusingequation(1). Thecrosssection
obtainedthereindicatesa targetsizemuchsmaller
thanthattypicalofcellularinactivation,approaching
the targetsizesin celltransformationandmutation
studies(refs.12and13).

Discussion

Solar maximum was achieved in 1990 and the next

solar minimum is expected in about 1996; that solar

minimum should approach the high fluxes of 1977.
Because accurate solar modulation models are not

available for transport codes, we present predictions

based on 1990 and 1977 galactic cosmic radiation

(GCR) spectra and actual measurements (ref. 14).
The scaling assumed for the less abundant elements
is taken from the Naval Research Laboratory model

(ref. 15). Recent measurements (ref. 16) on the Space
Transportation System 40 (STS-40) indicated that

transport code predictions with the 1990 spectrum
were about half those of the measurements. Several

factors could lead to this disagreement: solar mod-

ulation of tile GCR spectrum, the magnetic cutoffs

used in the predictions, meson production (which is
not included in the transport codes), and the nuclear ,

fragmentation parameters used for heavy-ion trans-

port. Predictions using solar minimum and maxi-
mum spectra are expected to bound the actual fluxes

on STS-42. In figure 6, wc show the unattenuated
GCR spectrum for an orbit of 57 ° by 163 n.mi. for
the solar minimum and maximum.
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Figure 6. Unattenuated integral flux spectrum versus LET
for solar minimum and m_imum in an orbit of 57° by
163 n.mi.

The International Microgravity Laboratory 1

(IML-1) experiment was placed inside the Spacelab

for its early 1992 mission. Therefore, we are par-

ticularly interested in assessing the fractions of mu-
tagenesis in space behind the STS-42 shielding. Fig-

ure 7 shows the expected energy spectrum of trapped

protons based on the Goddard Space Flight Center

energy-space-particle model AP-8. The plot reflects
our finding that very few high-energy protons had

sufficient range to penetrate the STS-42 shielding.
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Figure 7. Trapped proton energy spectrum for STS-42.

The corresponding shielding distribution is shown

in figure 8. Also shown is the distribution for dosime-
ter location 2, which was in the least shielded location

on STS-42. For the Spacelab, a significant fraction of

the solid angle is above 20 g/cm 2 aluminum, and we

expect that many heavy ions were fragmented with

the large buihtup of proton and neutron secondaries
near Caenorhabditis elegans (C. elegans). The ac-

tion cross section is plotted against range in figure 9

to illustrate how beam attenuation with shielding af-

fects the biological damage expected for various ions.
The low and medium charged ions should be drasti-

cally affected; the high Z particles with significant

range should be only slightly changed in cross sec-
tion; however, the use of equation (2) in the track-

width regime will lead to an underestimate of cross
section. The attenuated linear energy transfer (LET)

values for the solar maximum and minimum spectra

are shown in figures 10 and 11, respectively.

The Langley Research Center cosmic-ray trans-

port code (ref. 17) was used to predict the resulting
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Figure 9. Action cross section versus range for several ions.

mutation rates (ref. 7) for the solar maximum and

minimum spectra. Mutation rates were obtained as a
function of aluminum shield thickness and were aver-

aged over the shield distributions in figure 8 and over

the predictions in table II. It is clear from the table II

predictions that few mutations are expected in even

a large C. elegans population because of the short ex-
posure period• Also shown in table II are predicted

values for relative biological effectiveness (RBE) with

energetic photons the reference radiation. The high

values indicate that our reference photon radiation
did not produce indicative numbers of mutations at

low doses compared with the low exposure. The ex-

posure could be improved, however, if we optimize

the exposure geometry (if possible within Spacelab

constraints) and greatly increase the exposure pe-
riod. The substantial Spacelab shielding promotes

a trapped proton-induced mutation rate of less than
10 .7 for the mission that is much smaller than thc

GCR contribution•

Part of the C. elegans population was stored at

2°C in Spacelab so that researchers could identify
tracks through the surrounding plastic track detector

(CR-39). The temperature differential may have

altered repair mechanisms in that population; these

mechanisms can be interpreted by a repair model

that incorporate_ the track structure model discussed
in reference 18.
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Figure 10. Solar maximum integral flux spectrum versus LET
at Spaeelab and dosimeter location 2.
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Table II. Mutation Rates, RBE Values, and Dose Predictions for STS-42

Location

Spacelab

Dosimeter 2

Dose, mrad

Min l Max
57 34

54 31

Mutation factor

Min
0.77 x 10:6

.91 x 10 -6

Max

0.47 × 10 6

.48 x 10 -6

Min

102

107

RBE

Max

131

139

NASA Langley Research Center

Hampton, VA 23681-0001

September 30, 1992
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